Variable-length constrained-storage tree-structured vector quantization

نویسندگان

  • Ulug Bayazit
  • William A. Pearlman
چکیده

Constrained storage vector quantization, (CSVQ), introduced by Chan and Gersho (1990, 1991) allows for the stagewise design of balanced tree-structured residual vector quantization codebooks with low encoding and storage complexities. On the other hand, it has been established by Makhoul et al. (1985), Riskin et al. (1991), and by Mahesh et al. (see IEEE Trans. Inform. Theory, vol.41, p.917-30, 1995) that variable-length tree-structured vector quantizer (VLTSVQ) yields better coding performance than a balanced tree-structured vector quantizer and may even outperform a full-search vector quantizer due to the nonuniform distribution of rate among the subsets of its input space. The variable-length constrained storage tree-structured vector quantization (VLCS-TSVQ) algorithm presented in this paper utilizes the codebook sharing by multiple vector sources concept as in CSVQ to greedily grow an unbalanced tree structured residual vector quantizer with constrained storage. It is demonstrated by simulations on test sets from various synthetic one dimensional (1-D) sources and real-world images that the performance of VLCS-TSVQ, whose codebook storage complexity varies linearly with rate, can come very close to the performance of greedy growth VLTSVQ of Riskin et al. and Mahesh et al. The dramatically reduced size of the overall codebook allows the transmission of the code vector probabilities as side information for source adaptive entropy coding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Entropy Constrained Tree Structured Vector Quantization with Applications to Sources with Memory

An algorithm is derived for designing tree structured vector quantizers to encode sources with memory The algorithm minimizes the average distortion subject to a conditional entropy constraint and the tree structure restriction This technique called conditional entropy constrained tree structured vector quantization CECTSVQ can more e ciently exploit the source memory This work is an extension ...

متن کامل

Optimal pruning with applications to tree-structured source coding and modeling

An algorithm recently introduced by Breiman, Friedman, Olshen, and Stone in the context of classification and regression trees is reinterpreted and extended to cover a variety of applications in source coding and modeling in which trees are involved. These include variable-rate and minimum-entropy tree-structured vector quantization, minimum expected cost decision trees, variable-order Markov m...

متن کامل

Constrained-Storage Vector Quantization with a Universal Codebook

Many image compression techniques require the quantization of multiple vector sources with significantly different distributions. With vector quantization (VQ), these sources are optimally quantized using separate codebooks, which may collectively require an enormous memory space. Since storage is limited in most applications, a convenient way to gracefully trade between performance and storage...

متن کامل

Variable Fanout Trimmed Tree-structured Vector Quantization for Multirate Channels 1

| We introduce a generalized pruning technique called trimming which can improve upon the performance of pruned tree-structured vector quantization. The algorithm is used to optimize the tree structure with respect to a multirate channel. Experimental results are supplied which demonstrate this performance .

متن کامل

Variable Length Tree-Structured Subvector Quantization

It is demonstrated in this paper that the encoding complexity advantage of a variable-length tree-structured vector quantizer (VLTSVQ) can be enhanced by encoding low dimensional subvectors of a source vector instead of the source vector itself at the nodes of the tree structure without signiicantly sacriicing coding performance. The greedy tree growing algorithm for the design of such a vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 1999